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Abstract

Dislocations form in epitaxial thin films above a critical thickness, when the
stress due to the film–substrate mismatch becomes excessive. This phenomenon
has been extensively investigated in non-piezoelectric thin films. In piezoelectric
films, the mismatch strain field and the electric field are coupled, and the critical
thickness depends on an extra physical variable: the electric field. In this paper,
the critical thickness for dislocation formation in a piezoelectric film is derived.
The dependence of the critical thickness on the piezoelectric properties of the
AlxGa1�xN/GaN system is then discussed.

} 1. Introduction

Thin films play a pivotal role in modern engineering and technology. Their
performance is closely related to the material properties of the film and, in particular,
the crystal orientation (or texture for polycrystalline films), and the dislocation
density and distribution. As a result of the crystalline misfit with the substrate,
a newly deposited film is under stress, independent of whether it is polycrystalline
or heteroepitaxial. As the film thickens, the stress builds up and, eventually, the
conditions favour the generation of dislocations to relax the stress.

The existence of a critical thickness for dislocation generation in thin films was
first proposed by Frank and van der Merwe (1949) and it was subsequently con-
firmed experimentally. Indeed, if the misfit strain between the substrate material and
the film material is sufficiently small, or when the film is very thin, it can be accom-
modated elastically. However, as the film thickens, the energy required for elastic
accommodation increases and eventually becomes excessive, and the dislocations are
generated as an alternative means to accommodate the misfit.
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Two approaches are generally followed in the theoretical studies of critical thick-
ness of strained epitaxial films. The first approach involves the comparison of the
Gibbs free energy of the two strained systems, with and without the misfit disloca-
tion. In this approach, very thin films would have the lower free energy without the
misfit dislocation. As the film thickens beyond a certain critical value, the film with
the misfit dislocation would have the lower free energy. By equating the free energies
of the two systems, a necessary condition for the critical thickness is obtained. The
second approach considers the balance between two driving forces, one originating
from the misfit strain that tends to lengthen the misfit dislocation, and the other from
the line tension that tends to shorten it. We note that the two approaches are not
independent of each other and, indeed, Freund (1987) and Nix (1988) showed that
the two approaches lead to precisely the same results.

Investigations of the critical thickness based on either one of the foregoing
approaches have been reported in the literature. Thus, Matthews and Blakeslee
(1974) derived an equation for the critical thickness by assuming a critical balance
between the force generated by the lattice mismatch on a segment of a propagating
threading dislocation, and the extra line tension associated with a newly created
interfacial dislocation. Freund (1987) systematically investigated the driving force
for glide of a threading dislocation. The effect of elastic constants on the critical
thickness has been investigated by Willis et al. (1991), Gosling and Willis (1994)
and Zhang (1996). Freund and Nix (1996) and Zhang and Su (1999) extended the
analyses on the critical thickness of an epitaxial layer (epilayer) grown on an infinite
substrate to an epilayer grown on a compliant substrate.

Ferroelectric thin films are quickly becoming one of the most important compo-
nents in advanced microelectronic and micromechanical devices, such as high-
density nonvolatile random access memories, sensors, microactuators, piezoelectric
transducers and pyroelectric detectors. Despite their technological importance and
the detrimental effect of dislocation formation in such materials, the theoretical
framework for the analysis of the critical thickness for dislocation formation in a
piezoelectric film, in relation to its environmental, geometric and materials
parameters, has not been formulated. Indeed, for many practical applications,
estimations still have to be made extrapolating from the theory of non-piezoelectric
elastic films. Nevertheless, the complexity of the formulation involved in such an
analysis, due to the crystallographic anisotropy and the coupled elastic and electric
fields of piezoelectric materials, makes the problem non-trivial.

In this paper, we make an attempt to formulate the theoretical framework for
the aforesaid analyses. In } 2, the coupled elastic and electric fields of a dislocation
in a semi-infinite piezoelectric medium is first derived, on the basis of which an
explicit expression of the formation energy of the dislocation is obtained in } 3.
From equilibrium considerations, a formula to determine the critical thickness for
dislocation formation in a piezoelectric thin film is also derived. Finally in } 4,
the theory is applied to examine the effect of piezoelectricity on the critical thickness
of a thin film.

} 2. Elastic and electric fields in a piezoelectric semi-infinite space

with a dislocation

Consider the half-space x2> 0 occupied by a piezoelectric material, and a
straight dislocation with Burgers vector b. The dislocation and the associated line
charge q per unit length trapped by the dislocation core (Im et al. 2001) is assumed to
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be at (0, h), h> 0 (figure 1). In terms of the electrostatic potential ’, the electric field
Ei is given by

Ei ¼ �
o’

oxi
� �’, i: ð1Þ

The constitutive relation of the stress tensor �ij with the elastic displacement
gradients ui,j, and that of the electric displacement vector Di with the electric field
Ei respectively are given by

�ij ¼ Cijkmuk,m þ emij’,m,

Di ¼ eikmuk,m � �im’,m:
ð2Þ

Here repeated indices imply summation, a comma stands for differentiation. Cijkm is
the elastic stiffness tensor, emij are the piezoelectric stress constants and �im are the
permittivity constants. In the absence of body forces and free charges, the balance
laws require that

�ij, j ¼ 0, Di, i ¼ 0: ð3Þ

Assuming free surface boundary condition for the film, the traction and the
electrical displacement both vanish at x2¼ 0. Following Barnett and Lothe (1975),
we define the 3� 4� 4� 3 matrix G, the 3� 4 matrix D, and the quadruple u by

GiJKm ¼

Cijkm ðJ,K ¼ 1, 2, 3Þ,

emij ðJ ¼ 1, 2, 3; K ¼ 4Þ,

eikm ðJ ¼ 4; K ¼ 1, 2, 3Þ,

��im ðJ ¼ K ¼ 4Þ,

8>>>>><
>>>>>:

ð4Þ
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Figure 1. Schematic diagram of a misfit dislocation in the interface between an epilayer
and its substrate.



�iJ ¼
�ij ðJ ¼ 1, 2, 3Þ,

Dj ðJ ¼ 4Þ,

(
ð5Þ

uJ ¼
uj ðJ ¼ 1, 2, 3Þ,

’ ðJ ¼ 4Þ,

(
ð6Þ

so that equations (2) and (3) can be combined to give

GiJKmuK ,mi ¼ 0: ð7Þ

Here the lower-case indices i,m¼ 1, 2, 3, and the upper-case indices J,K¼ 1, 2, 3, 4.
Indices from 1 to 3 refer to the elastic variables, and the index 4 refers to the electric
variable. For two-dimensional problems, in which uK depends on only x1 and x2,
the general solution of equation (7) is a function of a linear combination of x1 and x2.
Thus, we can write, without loss of generality,

uJ ¼ aJ f ðzÞ, z ¼ x1 þ px2, ð8Þ

where f is an arbitrary function of z, and p and aJ are to be determined in the
following.

Substitution of equation (8) into equation (7), and noting that for f to be an
arbitrary function, we must satisfy

Qþ pðRþ R
T
Þ þ p2T

� �
a ¼ 0, ð9Þ

where the bold lower-case letters mean quadruples, and the bold capital letters mean
4� 4 matrices. Q, R and T are defined as

Q ¼
Ci1k1 ðe11Þi

ðeT11Þk ��11

" #
,

R ¼
Ci1k2 ðe21Þi

ðeT12Þk ��12

" #
,

T ¼
Ci2k2 ðe22Þi

ðeT22Þk ��22

" #
,

ðeijÞs ¼ eijs:

ð10Þ

Introducing the generalized stress function  J,

 J ¼ bJf ðzÞ, b ¼ ðR
T
þ pTÞa ¼ �

1

p
ðQþ pRÞa, ð11Þ,

one obtains

�i1 ¼ � i, 2, �i2 ¼ � i, 1, D1 ¼ � 4, 2, D2 ¼ � 4, 1: ð12Þ

It has been shown that p has eight eigenvalues, consisting of four pairs of complex
conjugates (Barnett and Lothe 1975, Ting 1996). The four eigenvalues with
Im ( p)> 0, are denoted by p� with �¼ 1, 2, 3, 4, and �pp� with Im ( p)<0 are the
complex conjugates of p�. The corresponding eigenvectors in equation (9) are
denoted by a�.
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Using the solution of the elastic counterpart (Ting 1992), the general solution for
equation (7) is given by

u ¼
1

p
Im ABðz� � p�hÞq

1
½ � þ

1

p
Im

X4
�¼1

ABðz� � �pp�hÞq�
� � !

,

t ¼
1

p
Im BBðz� � p�hÞq

1
½ � þ

1

p
Im

X4
�¼1

BBðz� � �pp�hÞq�
� � !

,

ð13Þ

where A and B are 4� 4 complex matrices defined using b� defined by equation (13)
for various eigenvalues p� and eigenvectors a�:

A ¼ ½a1, a2, a3, a4�, B ¼ ½b1, b2, b3, b4�, ð14Þ

and

Bðz� � p�hÞ ¼ diag ½logðz1 � p1hÞ, log ðz2 � p2hÞ, log ðz3 � p3hÞ, log ðz4 � p4hÞ�,

Bðz� � �pp�hÞ ¼ diag ½log ðz1 � �pp�hÞ, log ðz2 � �pp�hÞ, log ðz3 � �pp�hÞ, log ðz4 � �pp�hÞ�,

ð15Þ

In equation (13), q1 and q� are complex quantities to be determined next.
The boundary conditions can be written in the following form:

t ¼ 0, x2 ¼ 0,ð
O
du ¼ b, for any closed curve O enclosing ð0, hÞð

O
dt ¼ r, for any closed curve O enclosing ð0, hÞ

�ij ! 0; Di ! 0, when Zj j ¼ 1:

ð16Þ

In equation (16), b ¼ ðb1, b2, b3, b4Þ, r ¼ ð0, 0, 0,� qÞ, bi, i¼ 1, 2, 3, are the compo-
nents of the Burgers vector. The quantity b4 6¼ 0 corresponds to an electric dipole
layer along the cut plane. Note the distinction between b and the eigenvectors b1, b2,
etc., in equation (14). q is the line charge per unit length. Equation (16) is in a general
form that contains all the relevant boundary conditions for the dislocation problems
in epilayers. Substitution of equation (14) into equation (16) gives

q
1

¼ A
T
rþ B

T
b,

q� ¼ B
�1 �BBI� �qq

1,
ð17Þ

where

I1 ¼ diag 1, 0, 0, 0½ �, I2 ¼ diag 0, 1, 0, 0½ �, I3 ¼ diag 0, 0, 1, 0½ �, I4 ¼ diag 0, 0, 0, 1½ �:

ð18Þ

The solution for the half-space in equation (13) is made up of the two parts. The
first terms on the right-hand sides are the solution for the infinite space with a line
charge of q per unit length along the dislocation line at (x1, x2)¼ (0, h). The second
terms represent 16 one-component images for the infinite space whose singularities
are located outside the half-space. The first terms can be expressed in real form using
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the following relations (Ting 1996):

Im ABðz� � p�hÞq
1

½ � ¼ Im ABðz� � p�hÞðA
T
rþ B

T
bÞ

� �
¼ �

1

2
log ðr̂rÞ h�

p
2
Sð�̂�Þ � h�

p
2
Hð�̂�Þ � g,

Im BBðz� � p�hÞq
1

½ � ¼ Im BBðz� � p�hÞðA
T
rþ B

T
bÞ

� �
¼ �

1

2
log ðr̂rÞ gþ

p
2
Lð�̂�Þ h�

p
2
S
T
ð�̂�Þ g,

ð19Þ

where h ¼ S � bþH � r, and g ¼ S
T
� r� L � b. The generalized Barnett–Lothe

tensors S(�), H(�) and L(�) are defined as

Sð�Þ ¼
1

p

ð�
0

N1ð!Þ d!, Hð�Þ ¼
1

p

ð�
0

N2ð!Þ d!, Lð�Þ ¼
1

p

ð�
0

N3ð!Þ d!, ð20Þ

with

N1ð�Þ ¼ �T
�1
ð�ÞRT

ð�Þ,

N2ð�Þ ¼ T
�1
ð�Þ,

N3ð�Þ ¼ Rð�ÞT�1
ð�ÞRT

ð�Þ �Qð�Þ,

QJK ð�Þ ¼ niGiJKmnm, RJK ð�Þ ¼ niGiJKmmm, TJK ð�Þ ¼ miGiJKmmm:

ð21Þ

n
*T

¼ ½cos �, sin �, 0�; m
*T

¼ ½� sin �, cos �, 0� are the respective unit vectors, normal
and tangential, to a circle with its centre at r¼ 0, and S, H and L are the corre-
sponding values of Sð�Þ, Hð�Þ and Lð�Þ at � ¼ p. In equation (19), ðr̂r, �̂�Þ is the polar-
coordinate system with origin at (0, h). The second terms in equation (13) can be
written as

1

p
Im

X4
�¼1

fABðz� � �pp�hÞq�g

 !
¼
X4
�¼1

X4
�¼1

U��,

1

p
Im

X4
�¼1

fBBðz� � �pp�hÞq�g

 !
¼
X4
�¼1

X4
�¼1

 ��,

ð22Þ

with

U��
¼

1

p
Im log z� � z��

� �
q��a�

� �
,

 �� ¼
1

p
Im log z� � z��

� �
q��b�

� �
,

ð23Þ

z�� ¼ �pp�h ¼ x��1 þ p�x
��
2 ð24Þ

and where q�� is the �th component of q�, that is q�� ¼ ðq�Þ�, and a� and b� are the
eigenvectors of equations (9) and (11) defined earlier.
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} 3. Critical thickness for dislocation generation

Dislocation formation in an epilayer is energetically favourable when the
strain energy that can be relieved by the dislocation is larger than its self-energy.
The thickness for the generation of a dislocation in an epilayer is thus at least equal
to that marked by the balance point of the misfit energy and the dislocation self-
energy, which is also the point of zero Gibbs free-energy change when the dislocation
forms in the piezoelectric film. Although this condition is well accepted, it should be
noted that this is only a lower-bound condition, and the nucleation energy of the
dislocation has not been taken into account. This may be a reason for the frequently
found under-prediction of the critical thickness by this criterion. In the absence of
a better alternative, we use the usual energy balance criterion to estimate the critical
thickness of the piezoelectric thin film in our present analysis, within this under-
standing.

Neglecting the line charge (Im et al. 2001), the formation energy of a dislocation
in an originally stress-free epilayer–substrate system can be written as

Ef ¼
1

2

ððð
V

�mi j þ �
d
i j

� �
"mi j þ "

d
i j

� �
� Dm

j þDd
j

� �
’m, j þ ’

d
, j

� �h i
dv

�
1

2

ððð
V

�mi j "
m
i j �Dm

, j’
m
, j

� �
dv: ð25Þ

Here quantities with the superscript m and d represent the fields produced by
the mismatch and the dislocation respectively. The integration domain encloses
the entire solid of unit thickness except the dislocation core. For convenience, the
plane obtained from a cut along the x2 axis is taken to be the glide plane (figure 1).
Applying the divergence theorem to equation (22) yields

Ef ¼
1

2

ðð
S

�mi j þ �
d
i j

� �
umi þ udi

� �
� Dm

j þDd
j

� �
’m þ ’d
� �h i

nj ds

�
1

2

ðð
S

�mi j u
m
i �Dm

j ’
m

� �
nj ds

¼
1

2

ðð
S

�di ju
d
i �Dd

j ’
d

� �
nj ds

h i
þ

ðð
S

Cijkl"
m
klu

d
i � �i j’

m
i ’

d
� �

nj ds

¼ Es þ Eint, ð26Þ

where Es and Eint denote the self-energy of the dislocation and the interaction energy
between the dislocation and the mismatch strain respectively. The integration
boundary S includes the upper and lower sections with side planes x1 ! �1;ð

x2 ¼ 0; x2 ! 1Þ, and two sides of the cut. In deriving equation (26), we have
used the constitutive relation (2). The integration of the lower and upper planes
cancel each other and on x2 ¼ 0, x1 ! �1 or x2 ! 1, �i j ¼ 0 and Dj ¼ 0.
Therefore, the only non-zero contributions come from the two sides Aþ and A� of
the cut plane, and the contour of the dislocation core.
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In the following, we also omit the contribution from the dislocation core.
Therefore

Es ¼
1

2

ðh�r0

0

�ai jnj½ui� dx2 �
1

2

ðh�r0

0

Da
j nj½’� dx2,

¼
1

2

ðh�r0

0

�ai jnjbi dx2 �
1

2

ðh�r0

0

Da
j njb4 dx2,

ð27Þ

where

½ui� ¼ uiðA
�
Þ � uiðA

þ
Þ,

½’� ¼ ’ðA�
Þ � ’ðAþ

Þ,
ð28Þ

Eint ¼ �

ðh
0

Cijkl"
m
klnj½ui� dx2 þ

ðh
0

�i j’
m
, i nj½’� dx2

¼ �

ðh
0

Cijkl"
m
klnjbi dx2 þ

ðh
0

�i j’
m
, i
njb4 dx2:

ð29Þ

Under the boundary condition Dj ¼ 0 on the surface of the epilayer, one obtains
from the second equation of the constitutive equations (2),

�i j’
m
, j ¼ eikl"

m
kl , ð30Þ

from which the interaction energy can be obtained:

Eint ¼ �ðCi1kl"
m
klbi � e1kl"

m
klb4Þh: ð31Þ

Here we have used n ¼ ð1, 0, 0Þ. The self-energy can be obtained from equation (27):

Es ¼ �
1

4p
ðb1g1 þ b2g2 þ b3g3 � b4g4Þ log

h

r0

� �

�
1

2p

X4
�¼1

X4
�¼1

Im log 1�
p�
�pp�

� �
þ
p�
�pp�

r0
h

	 

q��b�

� �
� b

þ
1

2p

X4
�¼1

X4
�¼1

Im log 1�
p�
�pp�

� �
þ
p�
�pp�

r0
h

	 

q��b�4

� �
� b4, ð32Þ

where b�4 is the fourth component of the eigenvector b�, gi is the ith component of g,
which is defined after equation (19), and b is the Burgers vector as defined before. If
there are no electric dipoles along the cut, b4¼ 0. Equation (32) can be simplified
accordingly. Finally, substituting equations (31) and (32) into equation (26) yields
the following equation for the critical thickness hc of the piezoelectric epilayer for
dislocation generation:

1

4p
ðb1g1þb2g2þb3g3�b4g4Þ log

h

r0

� �
þ

1

2p

X4
�¼1

X4
�¼1

Im log 1�
p�
�pp�

� �
þ
p�
�pp�

r0
h

	 

q��b�

� �
�b

�
1

2p

X4
�¼1

X4
�¼1

Im log 1�
p�
�pp�

� �
þ
p�
�pp�

r0
h

	 

q��b�4

� �
�b4¼�ðCi1kl"

m
klbi�e1kl"

m
klb4Þhc:

ð33Þ
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} 4. Application

AlxGa1�xN/GaN heterostructure field-effect transistors are being developed for
high-power high-temperature microwave applications. Owing to the large piezo-
electric constants of AlxGa1�xN materials, and the sizeable lattice mismatch between
AlxGa1�xN and GaN, misfit dislocations are common defects in such structures. In
the following, we use the theory developed in the foregoing to calculate numerically
the critical thickness for dislocation formation in this system and explore the depen-
dence of this thickness on the piezoelectric properties of the epilayer.

Consider AlxGa1�xN with a wurtzite crystal structure to grow in the (0001)
orientation on GaN, with the same crystal structure. We use the lattice constants
of the AlxGa1�xN film obtained using the linear interpolation of Ambacher et al.
(2000):

a0ðxÞ ¼ ð�0:077xþ 3:189Þ � 10�10 m,

c0ðxÞ ¼ ð�0:203xþ 5:189Þ � 10�10 m:
ð34Þ

When x¼ 0, one can obtain the lattice constants for GaN. The elastic constants are
from Shimada et al. (1998):

C11 ¼ C33 ¼ 350GPa, C22 ¼ 376GPa, C13 ¼ 140GPa,

C12 ¼ 104GPa, C44 ¼ C66 ¼ 101GPa:
ð35Þ

The piezoelectric and dielectric constants from Ambacher et al. (2000) are

e22 ¼ 1Cm2, e21 ¼ e23 ¼ �0:36Cm�2, e16 ¼ e34 ¼ �0:3Cm�2,

�11 ¼ �33 ¼ 9:5"0, �22 ¼ 10:4 "0:
ð36Þ

Here, we note that, in our coordinate system, the axis of symmetry of transversely
isotropic (or hexagonal) materials is the x2 axis, instead of the x3 axis, as is usually
the case. For single-crystal AlxGa1�xN, with a wurtzite structure, grown on the basal
plane of sapphire or GaN, a high density of threading dislocations parallel to the
c axis crossed the film from the interface to the film surface (Ning et al. 1996,
Shen et al. 2000). They have a predominantly edge character with a 1

3 h11
�220i

Burgers vector. In our coordinate system, the components of Burgers vector can
be expressed in the form

b ¼ ½a0, 0, 0�: ð37Þ

To obtain the solution, one needs to derive the eigenvalues and eigenvectors
through equations (9) and (11). The wide range of material constants (from about
10�10 to about 1010) presents considerable difficulties in the numerical calculation.
To solve this problem, we rewrite the constitutive equations (2) in the forms

�i j ¼
1

�0
ð�0Cijkm þ emij’

_

,mÞ,

Di ¼ eikmuk,m � �rim’
_

,m,

ð38Þ

where ’
_

,m ¼ �0’,m and �0,�
r
im are the vacuum dielectric constant and the relative

dielectric constant respectively. By substituting equation (38) into equation (7),
one can dispose of the parameter 1=�0 before the parentheses. Then using the
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material matrixes (10), one can establish the matrix N and derive the eigenvalues and
eigenvectors as follows:

N1 N2

N3 N
T
1

" #
a

b

" #
¼ p

a

b

" #
, ð39Þ

where

N1 ¼ �T
�1
R

T, N2 ¼ T
�1, N3 ¼ RT

�1
R

T
�Q ð40Þ

and T, Q and R are given by equations (10), replacing Cijkm with �0Cijkm, and �im
with the relative dielectric constants.

Assuming that b4¼ 0, the mismatch strain then becomes

"m11 ¼ "m33 ¼
a

a0
� 1 � 0:005 31: ð41Þ

We are now ready to consider the effect of the piezoelectric properties of the epilayer
on the critical thickness, by considering the AlxGa1-xN material system, whose
material constants are given by equations (35) and (36). There are three independent
piezoelectric constants, and their effects on the critical thickness are shown respec-
tively in figures 2–4. The piezoelectric constants e21 and e16 assume negative values.
The relations between the critical thickness and the mismatch strain, with and with-
out the piezoelectric effect respectively are compared in figure 5. It is interesting to
note that the piezoelectric properties affect the critical thickness significantly, by an
increase of about 10–50%. The case where the piezoelectric constant equals zero
corresponds to the non-piezoelectric anisotropic elastic materials.
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Figure 2. The critical thickness hc/b versus the piezoelectric constant e22 of the epilayer,
where the index 2 corresponds to the direction of the c axis.
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Figure 3. The critical thickness versus the piezoelectric constant �e21.
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Figure 4. The critical thickness versus the piezoelectric constant e16 of the epilayer.
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